Skip to main content

Carbon Nanotubes Composite Membrane for Water Desalination

  • Chapter
  • First Online:
Sustainable Materials and Systems for Water Desalination

Abstract

The demand for freshwater has enormously risen the water stress in various parts of the globe. Accessibility of clean water is crucial for sustainable development involving socioeconomic and environmental promotion. Considering the fact that 96.5% of all Earth’s water is related to seawater, desalination (producing clean potable water from sea or saline water) can be considered as a leading solution to fulfill water scarcity problem. Among various advanced and conventional techniques, carbon nanotube (CNT) membrane has become an attractive alternate for most of water treatment methods owing supreme features such as easy operationality, low energy and expense requirement, high water permeability, permselectivity, and stability. CNTs can be grown in vertically aligned CNTs (VACNTs), transverse or horizontally aligned CNTs (HACNTs), and mixed matrix membranes (MMMs) shapes. CNT membranes are mostly synthesized by chemical vapor deposition (CVD), laser ablation (LA), and arc discharge (AD) methods. Researchers have investigated the effect of various factors on salt rejection and water flux such as dispersion quality, oscillating pressure, number of deposition cycle (while synthesizing the membrane), type of filler, fabrication method, temperature, and contact time. In this chapter, initially a general description of membrane filtration, their features in desalination, and synthesization methods are presented. Afterward, various intrinsic, thermal, and mechanical characteristics of CNTs (which make them pioneer in desalination goals) are mentioned. In following, the results of several studies and their key findings are noted. Finally, the challenges, perspectives, and future directions of this technology to enter desalination markets are explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelrasoul, A., Doan, H., & Lohi, A. (2017). Fabrication of biomimetic and bioinspired membranes. In Biomimetic and bioinspired membranes for new frontiers in sustainable water treatment technology, December 6, 2017. IntechOpen.

    Google Scholar 

  • Ali, S., Rehman, S. A., Luan, H. Y., Farid, M. U., & Huang, H. (2019). Challenges and opportunities in functional carbon nanotubes for membrane-based water treatment and desalination. Science of the Total Environment, 1(646), 1126–1139.

    Article  CAS  Google Scholar 

  • An, J., Zhan, Z., Krishna, S. H., & Zheng, L. (2014). Growth condition mediated catalyst effects on the density and length of horizontally aligned single-walled carbon nanotube arrays. Chemical Engineering Journal, 1(237), 16–22.

    Article  CAS  Google Scholar 

  • Ang, E. Y., Ng, T. Y., Yeo, J., Lin, R., Liu, Z., & Geethalakshmi, K. R. (2018). Effects of CNT size on the desalination performance of an outer-wall CNT slit membrane. Physical Chemistry Chemical Physics, 20(20), 13896–13902.

    Article  CAS  Google Scholar 

  • Ang, E. Y., Ng, T. Y., Yeo, J., Liu, Z., Lin, R., & Geethalakshmi, K. R. (2019b). Effects of oscillating pressure on desalination performance of transverse flow CNT membrane. Desalination, 1(451), 35–44.

    Article  CAS  Google Scholar 

  • Ang, E. Y., Ng, T. Y., Yeo, J., Lin, R., Liu, Z., Geethalakshmi, K. R., & Toh, W. (2019a). A review on low dimensional carbon desalination and gas separation membrane designs. Journal of Membrane Science, 117785.

    Google Scholar 

  • Anis, S. F., Hashaikeh, R., & Hilal, N. (2019). Functional materials in desalination: A review. Desalination, 468, 114077.

    Google Scholar 

  • Awad, I. E. (2016). Mechanical integrity and fabrication of carbon nanotube/copper-based through silicon via.

    Google Scholar 

  • Bai, Y., Zhang, R., Ye, X., Zhu, Z., Xie, H., Shen, B., Cai, D., Liu, B., Zhang, C., Jia, Z., & Zhang, S. (2018). Carbon nanotube bundles with tensile strength over 80 GPa. Nature Nanotechnology, 13(7), 589–595.

    Article  CAS  Google Scholar 

  • Baskar, G., Kalavathy, G., Aiswarya, R., & Selvakumari, I. A. (2019). Advances in bio-oil extraction from nonedible oil seeds and algal biomass. In Advances in eco-fuels for a sustainable environment (pp. 187–210). Woodhead Publishing.

    Google Scholar 

  • Bazargan, A., Sadeghi, H., Garcia-Mayoral, R., McKay, G. (2015) An unsteady state retention model for fluid desorption from sorbents. Journal of Colloid and Interface Science 450127–134. https://doi.org/10.1016/j.jcis.2015.02.036.

    Article  CAS  Google Scholar 

  • Beheshti, F., Tehrani, R. M., & Khadir, A. (2019). Sulfamethoxazole removal by photocatalytic degradation utilizing TiO2 and WO3 nanoparticles as catalysts: Analysis of various operational parameters. International Journal of Environmental Science and Technology, 16(12), 7987–7996.

    Article  CAS  Google Scholar 

  • Beier, S. P. (2014). Electrically driven membrane processes.

    Google Scholar 

  • Belleville, M.-P., & Vaillant, F. (2016). Membrane technology for production of nutraceuticals (pp. 217–234).

    Google Scholar 

  • Bhadra, M., & Mitra, S. (2014). Advances in nanostructured membranes for water desalination. In Nanotechnology applications for clean water (pp. 109–122), January 1, 2014. William Andrew Publishing.

    Google Scholar 

  • Camacho, L. M., Dumée, L., Zhang, J., Li, J. D., Duke, M., Gomez, J., & Gray, S. (2013). Advances in membrane distillation for water desalination and purification applications. Water, 5(1), 94–196.

    Article  Google Scholar 

  • Chan, W. F., Chen, H. Y., Surapathi, A., Taylor, M. G., Shao, X., Marand, E., & Johnson, J. K. (2013). Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination. ACS Nano, 7(6), 5308–5319.

    Article  CAS  Google Scholar 

  • Chaudhary, S., Luthra, P. K., & Kumar, A. (2013). Use of graphene as a patch material in comparison to the copper and other carbon nanomaterials.

    Google Scholar 

  • Chimisso, V., Maffeis, V., Hürlimann, D., Palivan, C. G., & Meier, W. (2020). Self-assembled polymeric membranes and nanoassemblies on surfaces: Preparation, characterization, and current applications. Macromolecular Bioscience, 20(1), 1900257.

    Article  CAS  Google Scholar 

  • Corry, B. (2008). Designing carbon nanotube membranes for efficient water desalination. The Journal of Physical Chemistry B, 112(5), 1427–1434.

    Article  CAS  Google Scholar 

  • Corry, B. (2011). Water and ion transport through functionalised carbon nanotubes: Implications for desalination technology. Energy & Environmental Science, 4(3), 751–759.

    Article  CAS  Google Scholar 

  • Cui, X., & Choo, K. H. (2014). Natural organic matter removal and fouling control in low-pressure membrane filtration for water treatment. Environmental Engineering Research, 19(1), 1–8.

    Article  Google Scholar 

  • Das, R. (2017). Advanced membrane materials for desalination: Carbon nanotube and graphene. Inorganic Pollutants in Wastewater: Methods of Analysis, Removal and Treatment, 1(16), 322.

    Google Scholar 

  • Das, R., Ali, M. E., Hamid, S. B. A., Ramakrishna, S., & Chowdhury, Z. Z. (2014). Carbon nanotube membranes for water purification: A bright future in water desalination. Desalination, 336, 97–109.

    Article  CAS  Google Scholar 

  • Das, R., & Tuhi, S. D. (2018). Carbon nanotubes synthesis. In Carbon nanotubes for clean water (pp. 27–84). Springer.

    Google Scholar 

  • de Paula, A. J., Padovani, G. C., Duran, N., & Souza Filho, A. G. (2016). Nanotoxicology of carbon-based nanomaterials. In Bioengineering applications of carbon nanostructures (pp. 105–137). Springer.

    Google Scholar 

  • Dong, Y., Ma, L., Tang, C. Y., Yang, F., Quan, X., Jassby, D., Zaworotko, M. J., & Guiver, M. D. (2018). Stable superhydrophobic ceramic-based carbon nanotube composite desalination membranes. Nano Letters, 18(9), 5514–5521.

    Article  CAS  Google Scholar 

  • Du, F., Zhu, L., & Dai, L. (2017). Carbon nanotube-based electrochemical biosensors. Biosensors Based on Nanomaterials and Nanodevices, 19, 273–294.

    Article  Google Scholar 

  • Esfahani, M. R., Aktij, S. A., Dabaghian, Z., Firouzjaei, M. D., Rahimpour, A., Eke, J., Escobar, I. C., Abolhassani, M., Greenlee, L. F., Esfahani, A. R., & Sadmani, A. (2019). Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications. Separation and Purification Technology, 15(213), 465–499.

    Article  CAS  Google Scholar 

  • Fane, A. T., Wang, R., & Jia, Y. (2011). Membrane technology: Past, present and future. In Membrane and desalination technologies (pp. 1–45). Humana Press.

    Google Scholar 

  • Fornasiero, F., Park, H. G., Holt, J. K., Stadermann, M., Grigoropoulos, C. P., Noy, A., & Bakajin, O. (2008). Ion exclusion by sub-2-nm carbon nanotube pores. Proceedings of the National Academy of Sciences, 105(45), 17250–17255.

    Article  CAS  Google Scholar 

  • Fu, S., Sun, Z., Huang, P., Li, Y., & Hu, N. (2019). Some basic aspects of polymer nanocomposites: A critical review. Nano Materials Science, 1(1), 2–30.

    Article  Google Scholar 

  • Gao, W., & Kono, J. (2019). Science and applications of wafer-scale crystalline carbon nanotube films prepared through controlled vacuum filtration. Royal Society Open Science, 6(3), 181605.

    Google Scholar 

  • Gerba, C. P., & Pepper, I. L. (2019). Municipal wastewater treatment. In Environmental and pollution science (pp. 393–418), January 1, 2019. Academic Press.

    Google Scholar 

  • Ghenaatgar, A., Tehrani, R. M., & Khadir, A. (2019). Photocatalytic degradation and mineralization of dexamethasone using WO3 and ZrO2 nanoparticles: Optimization of operational parameters and kinetic studies. Journal of Water Process Engineering, 32, 100969.

    Google Scholar 

  • Gohier, A., Ewels, C. P., Minea, T. M., & Djouadi, M. A. (2008). Carbon nanotube growth mechanism switches from tip-to base-growth with decreasing catalyst particle size. Carbon, 46(10), 1331–1338.

    Article  CAS  Google Scholar 

  • Goldsmith, J., & Martens, C. C. (2010). Molecular dynamics simulation of salt rejection in model surface-modified nanopores. The Journal of Physical Chemistry Letters, 1(2), 528–535.

    Article  CAS  Google Scholar 

  • Golshadi, M. (2016). Carbon nanotube arrays for intracellular delivery and biological applications.

    Google Scholar 

  • Gomez-Ballesteros, J. L., Burgos, J. C., Lin, P. A., Sharma, R., & Balbuena, P. B. (2015). Nanocatalyst shape and composition during nucleation of single-walled carbon nanotubes. RSC Advances, 5(129), 106377–106386.

    Article  CAS  Google Scholar 

  • Graff, M. (2012). Disposal of metalworking fluids. In Metalworking fluids (MWFs) for cutting and grinding (pp. 389–402). Woodhead Publishing.

    Google Scholar 

  • Gupta, V. K., Ali, I., Saleh, T. A., Nayak, A., & Agarwal, S. (2012). Chemical treatment technologies for waste-water recycling—An overview. RSC Advances, 2(16), 6380–6388.

    Article  CAS  Google Scholar 

  • Hanasaki, N., Yoshikawa, S., Kakinuma, K., & Kanae, S. (2016). A seawater desalination scheme for global hydrological models. Hydrology and Earth System Sciences, 20(10), 4143–4157.

    Article  Google Scholar 

  • Hassan, A. A., Mansour, M. K., El Ahl, R. M., El Hamaky, A. M., & Oraby, N. H. (2020). Toxic and beneficial effects of carbon nanomaterials on human and animal health. In Carbon nanomaterials for agri-food and environmental applications (pp. 535–555), January 1, 2020. Elsevier.

    Google Scholar 

  • He, C., Zhao, N., Shi, C., Liu, E., & Li, J. (2015). Fabrication of nanocarbon composites using in situ chemical vapor deposition and their applications. Advanced Materials, 27(36), 5422–5431.

    Article  CAS  Google Scholar 

  • Helfferich, F. G. (2004). Polymerization. Elsevier.

    Google Scholar 

  • Hosseini, S. A. A., Mojtahedi, S. F. F., Sadeghi, H. (2020) Optimisation of deep mixing technique by artificial neural network based on laboratory and field experiments. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 14(2), 142–157. https://doi.org/10.1080/17499518.2019.1612526.

    Article  Google Scholar 

  • Huang, S., Woodson, M., Smalley, R., & Liu, J. (2004). Growth mechanism of oriented long single walled carbon nanotubes using “fast-heating” chemical vapor deposition process. Nano Letters, 4(6), 1025–1028.

    Article  CAS  Google Scholar 

  • Humplik, T., Lee, J., O’hern, S. C., Fellman, B. A., Baig, M. A., Hassan, S. F., Atieh, M. A., Rahman, F., Laoui, T., Karnik, R., & Wang, E. N. (2011). Nanostructured materials for water desalination. Nanotechnology, 22(29), 292001.

    Google Scholar 

  • Ihsanullah. (2019). Carbon nanotube membranes for water purification: Developments, challenges, and prospects for the future. Separation and Purification Technology, 209, 307–337.

    Google Scholar 

  • Jia, Y. X., Li, H. L., Wang, M., Wu, L. Y., & Hu, Y. D. (2010). Carbon nanotube: Possible candidate for forward osmosis. Separation and Purification Technology, 75(1), 55–60.

    Article  CAS  Google Scholar 

  • Jones, E., Qadir, M., van Vliet, M. T., Smakhtin, V., & Kang, S. M. (2019). The state of desalination and brine production: A global outlook. Science of the Total Environment, 657, 1343–1356.

    Article  CAS  Google Scholar 

  • Kalra, A., Garde, S., & Hummer, G. (2003). Osmotic water transport through carbon nanotube membranes. Proceedings of the National Academy of Sciences, 100(18), 10175–10180.

    Article  CAS  Google Scholar 

  • Kathiresan, G., & Doss, N. R. M. (2020). Bio based (nano chitin and nano chitosan) polymer nanocomposite membranes and their pervaporation application. In Polymer nanocomposite membranes for pervaporation (pp. 35–104). Elsevier.

    Google Scholar 

  • Kayvani Fard, A., McKay, G., Buekenhoudt, A., Al Sulaiti, H., Motmans, F., Khraisheh, M., & Atieh, M. (2018). Inorganic membranes: Preparation and application for water treatment and desalination. Materials, 11(1), 74.

    Article  CAS  Google Scholar 

  • Khadir, A., Negarestani, M., & Ghiasinejad, H. (2020b). Low-cost sisal fibers/polypyrrole/polyaniline biosorbent for sequestration of reactive orange 5 from aqueous solutions. Journal of Environmental Chemical Engineering, 103956.

    Google Scholar 

  • Khadir, A., Negarestani, M., & Mollahosseini, A. (2020a). Sequestration of a non-steroidal anti-inflammatory drug from aquatic media by lingocellulosic material (Luffa cylindrica) reinforced with polypyrrole: Study of parameters, kinetics, and equilibrium. Journal of Environmental Chemical Engineering, 8(3), 103734.

    Google Scholar 

  • Khan, S., & Ali, J. (2018). Chemical analysis of air and water. In Bioassays (pp. 21–39), January 1, 2018. Elsevier.

    Google Scholar 

  • Khorsandi, H., Teymori, M., Aghapour, A. A., Jafari, S. J., Taghipour, S., & Bargeshadi, R. (2019). Photodegradation of ceftriaxone in aqueous solution by using UVC and UVC/H2O2 oxidation processes. Applied Water Science, 9(4), 81.

    Article  CAS  Google Scholar 

  • Kim, H. J., Choi, K., Baek, Y., Kim, D. G., Shim, J., Yoon, J., & Lee, J. C. (2014). High-performance reverse osmosis CNT/polyamide nanocomposite membrane by controlled interfacial interactions. ACS Applied Materials & Interfaces, 6(4), 2819–2829.

    Article  CAS  Google Scholar 

  • Kolmetz, K., Firdaus, M. A., & Dwijayanti, A. (2014). Membrane technology selection, sizing and troubleshooting. In Kolmetz handbook of process equipment design (pp. 5–107). KLM Technology Group.

    Google Scholar 

  • Kong, J., Soh, H. T., Cassell, A. M., Quate, C. F., & Dai, H. (1998). Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature, 395(6705), 878–881.

    Article  CAS  Google Scholar 

  • Krishnakumar, P., Tiwari, P. B., Staples, S., Luo, T., Darici, Y., He, J., & Lindsay, S. M. (2012). Mass transport through vertically aligned large diameter MWCNTs embedded in parylene. Nanotechnology, 23(45), 455101.

    Google Scholar 

  • Kumar, P., Sharma, N., Ranjan, R., Kumar, S., Bhat, Z. F., & Jeong, D. K. (2013). Perspective of membrane technology in dairy industry: A review. Asian-Australasian Journal of Animal Sciences, 26(9), 1347.

    Article  Google Scholar 

  • Lee, B., Baek, Y., Lee, M., Jeong, D. H., Lee, H. H., Yoon, J., & Kim, Y. H. (2015). A carbon nanotube wall membrane for water treatment. Nature Communications, 6(1), 1–7.

    Google Scholar 

  • Lee, J. (2019). Carbon nanotube-based membranes for water purification. In Nanoscale materials in water purification (pp. 309–331), January 1, 2019. Elsevier.

    Google Scholar 

  • Li, K., Lee, B., & Kim, Y. (2019). High performance reverse osmosis membrane with carbon nanotube support layer. Journal of Membrane Science, 592, 117358.

    Google Scholar 

  • Li, P., & Zhang, J. (2019). Preparation of horizontal single-walled carbon nanotubes arrays. In Single-walled carbon nanotubes (pp. 69–98). Springer.

    Google Scholar 

  • Li, S., Feng, Y., Li, Y., Feng, W., & Yoshino, K. (2016). Transparent and flexible films of horizontally aligned carbon nanotube/polyimide composites with highly anisotropic mechanical, thermal, and electrical properties. Carbon, 1(109), 131–140.

    Article  CAS  Google Scholar 

  • Li, W., Wang, W., Zheng, X., Dong, Z., Yan, Y., & Zhang, J. (2017b). Molecular dynamics simulations of water flow enhancement in carbon nanochannels. Computational Materials Science, 1(136), 60–66.

    Article  CAS  Google Scholar 

  • Li, Y., Ji, K., Duan, Y., Meng, G., & Dai, Z. (2017a). Effect of hydrogen concentration on the growth of carbon nanotube arrays for gecko-inspired adhesive applications. Coatings, 7(12), 221.

    Article  CAS  Google Scholar 

  • Liu, X., Shu, L., & Jin, S. (2019). A modeling investigation on the thermal effect in osmosis with gap-filled vertically aligned carbon nanotube membranes. Journal of Membrane Science, 15(580), 143–153.

    Article  CAS  Google Scholar 

  • Ma, L., Dong, X., Chen, M., Zhu, L., Wang, C., Yang, F., & Dong, Y. (2017). Fabrication and water treatment application of carbon nanotubes (CNTs)-based composite membranes: A review. Membranes, 7(1), 16.

    Article  CAS  Google Scholar 

  • Maghami, M., & Abdelrasoul, A. (2018). Zeolite mixed matrix membranes (Zeolite-MMMs) for sustainable engineering. Zeolites and Their Applications, 27, 115.

    Google Scholar 

  • Mandal, S., & Kulkarni, B. D. (2011). Separation strategies for processing of dilute liquid streams. International Journal of Chemical Engineering.

    Google Scholar 

  • Mathew, A. P., Liu, P., Karim, Z., & Oksman, K. (2014). Nanocellulose and nanochitin in membrane applications. In Handbook of green materials: 3 Self-and direct-assembling of bionanomaterials (pp. 247–259).

    Google Scholar 

  • Mirjavadi, E. S., Tehrani, R. M., & Khadir, A. (2019). Effective adsorption of zinc on magnetic nanocomposite of Fe3O4/zeolite/cellulose nanofibers: Kinetic, equilibrium, and thermodynamic study. Environmental Science and Pollution Research, 26(32), 33478–33493.

    Article  CAS  Google Scholar 

  • Mohammadi, A., Khadir, A., & Tehrani, R. M. (2019). Optimization of nitrogen removal from an anaerobic digester effluent by electrocoagulation process. Journal of Environmental Chemical Engineering, 7(3), 103195.

    Google Scholar 

  • Mollahosseini, A., Khadir, A., & Saeidian, J. (2019). Core–shell polypyrrole/Fe3O4 nanocomposite as sorbent for magnetic dispersive solid-phase extraction of Al+3 ions from solutions: Investigation of the operational parameters. Journal of Water Process Engineering, 29, 100795.

    Google Scholar 

  • Monea, B. F., Ionete, E. I., Spiridon, S. I., Ion-Ebrasu, D., & Petre, E. (2019). Carbon nanotubes and carbon nanotube structures used for temperature measurement. Sensors, 19(11), 2464.

    Article  CAS  Google Scholar 

  • Morais, M. V., Oliva-Avilés, A. I., Matos, M. A., Tagarielli, V. L., Pinho, S. T., Hübner, C., & Henning, F. (2019). On the effect of electric field application during the curing process on the electrical conductivity of single-walled carbon nanotubes–epoxy composites. Carbon, 1(150), 153–167.

    Article  CAS  Google Scholar 

  • Nandi, B. K., Uppaluri, R., & Purkait, M. K. (2008). Preparation and characterization of low cost ceramic membranes for micro-filtration applications. Applied Clay Science, 42(1–2), 102–110.

    Article  CAS  Google Scholar 

  • Narang, J., & Pundir, C. S. (2018). Current and future developments in nanomaterials and carbon nanotubes (pp. 24–29). Bentham Science Publishers.

    Google Scholar 

  • Nath, K. (2017). Membrane separation processes. PHI Learning Pvt. Ltd.

    Google Scholar 

  • Nayfeh, M. H. (2018). Fundamentals and applications of nano silicon in plasmonics and fullerines: Current and future trends (pp. 287–309), June 29, 2018. Elsevier.

    Google Scholar 

  • Neupane, S., & Li, W. (2011). Carbon nanotube arrays: Synthesis, properties, and applications. In Three-dimensional nanoarchitectures (pp. 261–285). Springer.

    Google Scholar 

  • Page, A. J., Ohta, Y., Irle, S., & Morokuma, K. (2010). Mechanisms of single-walled carbon nanotube nucleation, growth, and healing determined using QM/MD methods. Accounts of Chemical Research, 43(10), 1375–1385.

    Article  CAS  Google Scholar 

  • Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M., & Freeman, B. D. (2017). Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science, 356(6343), eaab0530.

    Google Scholar 

  • Pendergast, M. M., & Hoek, E. M. (2011). A review of water treatment membrane nanotechnologies. Energy & Environmental Science, 4(6), 1946–1971.

    Article  CAS  Google Scholar 

  • Piri, F., Mollahosseini, A., & Hosseini, M. M. (2019). Enhanced adsorption of dyes on microwave-assisted synthesized magnetic zeolite-hydroxyapatite nanocomposite. Journal of Environmental Chemical Engineering, 7(5), 103338.

    Google Scholar 

  • Piri, F., Mollahosseini, A., Khadir, A., & Hosseini, M. M. (2020). Synthesis of a novel magnetic zeolite–hydroxyapatite adsorbent via microwave-assisted method for protein adsorption via magnetic solid-phase extraction. Journal of the Iranian Chemical Society, 24, 1–4.

    Google Scholar 

  • Qadir, D., Mukhtar, H., & Keong, L. K. (2017). Mixed matrix membranes for water purification applications. Separation & Purification Reviews, 46(1), 62–80.

    Article  Google Scholar 

  • Ragunath, S., Roy, S., & Mitra, S. (2018). Carbon nanotube immobilized membrane with controlled nanotube incorporation via phase inversion polymerization for membrane distillation based desalination. Separation and Purification Technology, 3(194), 249–255.

    Article  CAS  Google Scholar 

  • Ratto, T. V., Holt, J. K., & Szmodis, A. W. (2011). Membranes with embedded nanotubes for selective permeability. United States Patent US 7,993,524, August 9, 2011.

    Google Scholar 

  • Roy, K., Mukherjee, A., Maddela, N. R., Chakraborty, S., Shen, B., Li, M., Du, D., Peng, Y., Lu, F., & Cruzatty, L. C. (2020). Outlook on the bottleneck of carbon nanotube in desalination and membrane-based water treatment—A review. Journal of Environmental Chemical Engineering, 8(1), 103572.

    Google Scholar 

  • Roy, S., & Singha, N. R. (2017). Polymeric nanocomposite membranes for next generation pervaporation process: Strategies, challenges and future prospects. Membranes, 7(3), 53.

    Article  CAS  Google Scholar 

  • Sadeghi, H. (2016) A micro-structural study on hydro-mechanical behavior of loess, PhD thesis. Hong Kong University of Science and Technology & Sharif University of Technology.

    Google Scholar 

  • Sadeghi, H., Hossen, SK. B., Chiu, A. C. F., Cheng, Q., Ng, C. W. W. (2016) Water retention curves of intact and re-compacted loess at different net stresses. Japanese Geotechnical Society Special Publication, 2(4), 221–225. https://doi.org/10.3208/jgssp.HKG-04

    Article  Google Scholar 

  • Salisbury, R. L., Agans, R., Huddleston, M. E., Snyder, A., Mendlein, A., & Hussain, S. (2018). Toxicological mechanisms of engineered nanomaterials: Role of material properties in inducing different biological responses. In Handbook of developmental neurotoxicology (pp. 237–249), January 1, 2018. Academic Press.

    Google Scholar 

  • Sanz, M. Á. (2019). Desalination and water reuse business forum: Trends in desalination & water reuse. Available at: https://www.siww.com.sg/docs/default-source/default-document-library/mr-miguel-sanz.pdf?sfvrsn=2. Accessed date: May 13, 2020.

  • Sattar, R., Kausar, A., & Siddiq, M. (2015). Advances in thermoplastic polyurethane composites reinforced with carbon nanotubes and carbon nanofibers: A review. Journal of Plastic Film & Sheeting, 31(2), 186–224.

    Article  CAS  Google Scholar 

  • Scott, K. (1995). Introduction to membrane separations. In Handbook of industrial membranes: Introduction to membrane separation (2rd ed., pp. 3–185). Elsevier Advanced Technology.

    Google Scholar 

  • Sengupta, J. (2018). Carbon nanotube fabrication at industrial scale: Opportunities and challenges. In Handbook of nanomaterials for industrial applications (pp. 172–194), January 1, 2018. Elsevier.

    Google Scholar 

  • Shawky, H. A., Chae, S. R., Lin, S., & Wiesner, M. R. (2011). Synthesis and characterization of a carbon nanotube/polymer nanocomposite membrane for water treatment. Desalination, 272(1–3), 46–50.

    Article  CAS  Google Scholar 

  • Shi, W., & Plata, D. L. (2018). Vertically aligned carbon nanotubes: Production and applications for environmental sustainability. Green Chemistry, 20(23), 5245–5260.

    Article  CAS  Google Scholar 

  • Sianipar, M., Kim, S. H., Iskandar, F., & Wenten, I. G. (2017). Functionalized carbon nanotube (CNT) membrane: Progress and challenges. RSC Advances, 7(81), 51175–51198.

    Article  CAS  Google Scholar 

  • Sielicki, K., Aleksandrzak, M., & Mijowska, E. (2020). Oxidized SWCNT and MWCNT as co-catalysts of polymeric carbon nitride for photocatalytic hydrogen evolution. Applied Surface Science, 508, 145144.

    Google Scholar 

  • Song, C., & Corry, B. (2009). Intrinsic ion selectivity of narrow hydrophobic pores. The Journal of Physical Chemistry B, 113(21), 7642–7649.

    Article  CAS  Google Scholar 

  • Srivastava, R. K. (2006). Proceedings of all India seminar on advances in product development (APD-2006).

    Google Scholar 

  • Strathmann, H. (2000). Membranes and membrane separation processes. In Ullmann’s Encyclopedia of industrial chemistry (pp. 413–456), June 15.

    Google Scholar 

  • Suk, M. E., & Aluru, N. R. (2010). Water transport through ultrathin graphene. The Journal of Physical Chemistry Letters, 1(10), 1590–1594.

    Article  CAS  Google Scholar 

  • Sun, L., & Crooks, R. M. (2000). Single carbon nanotube membranes: A well-defined model for studying mass transport through nanoporous materials. Journal of the American Chemical Society, 122(49), 12340–12345.

    Article  CAS  Google Scholar 

  • Sun, M., Boo, C., Shi, W., Rolf, J., Shaulsky, E., Cheng, W., Plata, D. L., Qu, J., & Elimelech, M. (2019). Engineering carbon nanotube forest superstructure for robust thermal desalination membranes. Advanced Functional Materials, 29(36), 1903125.

    Article  CAS  Google Scholar 

  • Suzuki, S. (Ed.). (2013). Syntheses and applications of carbon nanotubes and their composites, May 9, 2013. BoD-Books on Demand.

    Google Scholar 

  • Taghipour, S., & Ayati, B. (2017). Cultivation of aerobic granules through synthetic petroleum wastewater treatment in a cyclic aerobic granular reactor. Desalination and Water Treatment, 1(76), 134–142.

    Article  CAS  Google Scholar 

  • Taghipour, S., Ayati, B., & Razaei, M. (2017). Study of the SBAR performance in COD removal of Petroleum and MTBE. Modares Civil Engineering Journal, 17(4), 17–27.

    Google Scholar 

  • Taghipour, S., Hosseini, S. M., & Ataie-Ashtiani, B. (2019). Engineering nanomaterials for water and wastewater treatment: Review of classifications, properties and applications. New Journal of Chemistry, 43(21), 7902–7927.

    Article  CAS  Google Scholar 

  • Tan, X., & Rodrigue, D. (2019). A review on porous polymeric membrane preparation. Part I: Production techniques with polysulfone and poly (vinylidene fluoride). Polymers, 11(7), 1160.

    Google Scholar 

  • The International Desalination Association (IDA). (2020). https://idadesal.org/about/. Accessed date: May 13, 2020.

  • Tiwari, S. K., Kumar, V., Huczko, A., Oraon, R., Adhikari, A. D., & Nayak, G. C. (2016). Magical allotropes of carbon: Prospects and applications. Critical Reviews in Solid State and Materials Sciences, 41(4), 257–317.

    Article  CAS  Google Scholar 

  • Tlili, I., & Alkanhal, T. A. (2019). Nanotechnology for water purification: Electrospun nanofibrous membrane in water and wastewater treatment. Journal of Water Reuse and Desalination, 9(3), 232–248.

    Article  CAS  Google Scholar 

  • Todri-Sanial, A. (2016). Investigation of electrical and thermal properties of carbon nanotube interconnects. In 2016 26th International Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS) (pp. 25–32), September 21, 2016. IEEE.

    Google Scholar 

  • Tofighy, M. A., & Mohammadi, T. (2020). Carbon nanotubes-polymer nanocomposite membranes for pervaporation. In Polymer nanocomposite membranes for pervaporation (pp. 105–133). Elsevier.

    Google Scholar 

  • Trivedi, S., & Alameh, K. (2016). Effect of vertically aligned carbon nanotube density on the water flux and salt rejection in desalination membranes. Springerplus, 5(1), 1158.

    Article  CAS  Google Scholar 

  • Ursino, C., Castro-Muñoz, R., Drioli, E., Gzara, L., Albeirutty, M. H., & Figoli, A. (2018). Progress of nanocomposite membranes for water treatment. Membranes, 8(2), 18.

    Article  CAS  Google Scholar 

  • Werber, J. R., Osuji, C. O., & Elimelech, M. (2016). Materials for next-generation desalination and water purification membranes. Nature Reviews Materials, 1(5), 1–5.

    Article  CAS  Google Scholar 

  • World Bank. (2019). The role of desalination in an increasingly water-scarce world. World Bank.

    Book  Google Scholar 

  • World Health Organization (WHO). (2020). Health and Environment Linkages Initiative—HELI. https://www.who.int/heli/risks/water/en/. Accessed on 3/5/2020.

  • Xiao, F. X., Pagliaro, M., Xu, Y. J., & Liu, B. (2016). Layer-by-layer assembly of versatile nanoarchitectures with diverse dimensionality: A new perspective for rational construction of multilayer assemblies. Chemical Society Reviews, 45(11), 3088–3121.

    Article  CAS  Google Scholar 

  • Yang, Z., Zhou, Y., Feng, Z., Rui, X., Zhang, T., & Zhang, Z. (2019). A review on reverse osmosis and nanofiltration membranes for water purification. Polymers, 11(8), 1252.

    Article  CAS  Google Scholar 

  • Yin, J., & Deng, B. (2015). Polymer-matrix nanocomposite membranes for water treatment. Journal of Membrane Science, 1(479), 256–275.

    Article  CAS  Google Scholar 

  • Youravong, W., & Marthosa, S. (2017). Membrane technology in fish-processing waste utilization: Some insights on sustainability. Sustainability Challenges in the Agrofood Sector, 22, 575.

    Article  Google Scholar 

  • Yousefi, A. T., Mahmood, M. R., & Ikeda, S. (2016). Growth of well-oriented VACNTs using thermal chemical vapor deposition method. In AIP Conference Proceedings (Vol. 1733, No. 1, p. 020038), July 6, 2016. AIP Publishing LLC.

    Google Scholar 

  • Zhang, Q., Huang, J. Q., Zhao, M. Q., Qian, W. Z., & Wei, F. (2011). Carbon nanotube mass production: Principles and processes. ChemSusChem, 4(7), 864–889.

    Article  CAS  Google Scholar 

  • Zhang, R., Zhang, Y., & Wei, F. (2014). Synthesis and properties of ultralong carbon nanotubes. In Nanotube superfiber materials (pp. 87–136), January 1, 2014. William Andrew Publishing.

    Google Scholar 

  • Zhang, R., Zhang, Y., & Wei, F. (2017). Horizontally aligned carbon nanotube arrays: Growth mechanism, controlled synthesis, characterization, properties and applications. Chemical Society Reviews, 46(12), 3661–3715.

    Article  CAS  Google Scholar 

  • Zhang, R., Zhang, Y., Zhang, Q., Xie, H., Qian, W., & Wei, F. (2013). Growth of half-meter long carbon nanotubes based on Schulz-Flory distribution. ACS Nano, 7(7), 6156–6161.

    Article  CAS  Google Scholar 

  • Zheng, L. X., O’connell, M. J., Doorn, S K., Liao, X. Z., Zhao, Y. H., Akhadov, E. A., Hoffbauer, M. A., Roop, B. J., Jia, Q. X., Dye, R. C., & Peterson, D. E. (2004). Ultralong single-wall carbon nanotubes. Nature Materials, 3(10), 673–676.

    Google Scholar 

  • Zhu, Z., Wei, N., Cheng, W., Shen, B., Sun, S., Gao, J., Wen, Q., Zhang, R., Xu, J., Wang, Y., & Wei, F. (2019). Rate-selected growth of ultrapure semiconducting carbon nanotube arrays. Nature Communications, 10(1), 1–8.

    Article  CAS  Google Scholar 

Download references

Conflicts of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shabnam Taghipour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Taghipour, S., Khadir, A., Taghipour, M. (2021). Carbon Nanotubes Composite Membrane for Water Desalination. In: Inamuddin, Khan, A. (eds) Sustainable Materials and Systems for Water Desalination. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-72873-1_10

Download citation

Publish with us

Policies and ethics